NUMERICAL SIMULATION OF AN ADDITIVE MANUFACTURING PROCESS FOR LOW-IMPEDANCE ELECTRONICS

<u>T. Hehn^{1,2}</u>, F. Zimmer¹, M. Klein², J. Holtmannspötter^{1,2}

09 Nov 2023, James Webinar

Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) ♥ Erding, Germany

University of the Bundeswehr Munich ♥ Neubiberg, Germany

- 1. What is "AM of Electronics"?
- 2. Current printing strategy and disadvantages for HF-applications
- 3. CFD-Simulation for optimizing the printing results

Advantages and Applications

(printed by James)

optimizing eletrical properties e.g. avoiding losses

new design capabilities e.g. miniaturization

integration of functions e.g. electrification of textiles

3D-Printing of Electronics using material jetting

Development of the level of sintering

30 % of bulk conductivity

3 % of bulk conductivity

A closer look to the microstructure

isolating material (Photopolymer)

conductive material (AgNP)

micro-structure as cross section

3D-printed coax line

A closer look to the microstructure

isolating material (Photopolymer)

conductive material (AgNP)

micro-structure as cross section

3D-printed coax line

HF-properties due to Skin-Effect

isolating material (Photopolymer)

Distance to $1/e \approx 37\%$ current density 1.5 1.5 1.0 0.5 0.00.0

penetration depth to 37% of current density in a circular conductor due to the Skin-Effect.

Microstructure as cross section – size comparison with effective cross section area

1.6 Ghz: 1,66 µm

The idea of an optimized printing strategy

current strategy

one layer of conductive ink
one layer of dielectric ink

"2.5D-printing"

new approach

- multiple layers of of dielectric ink
- multiple layers of of conductive ink

"2.75D-printing"

First results of printed samples using a custom slicer

microscopic picture of current printing strategy

microscopic picture of proposed printing strategy

HF properties evaluation using numerical simulation

(with Ansys HFSS: <u>high-frequency structure simulator</u>)

simulated representative 3D-geometries for HF-simulation

Comparison of the simulated damping characteristics (S21) for different dielectrics

Optimizing the stacking

Tobias Hehn

Stacking of the droplets

exemplary simulation parameters

Parameter	Unit	Value
Setup		
droplet radius	m	9.85e-6
droplet speed	m/s	4
droplet temperature	К	328
Ink		
droplet mol weight	g/mol	240
droplet heat capacity	J/kg/K	1150
droplet density	kg/m³	1180
droplet dyn. viscosity	Pa.s	Polynom
droplet heat conductivity	W/m/K	0.219
droplet surface tension	N/m	0.045
Substrate		
wall friction	-	noSlip
contact angle	deg	constant
substrate temperature	К	433
substrate head capacity	W/m/K	0.219
heat transfert coefficient	W/m²/K	70
substrate thickness	m	100e-6

Method of the simulation studies

printing

parameters

substrateThermalCond": (0.2, 400), "substrateThermalCond": (0.2, 400), "substrateThickness": (1e-6, 3000e-6), "contactAngle": (15, 39), "dropletRadius": (7e-6, 14e-6), "dropletVelocity": (4, 8), "dropletVelocity": (4, 8), "dropletInitialTemp": (313, 343), "dropletInitialTemp": (0.2, 0.6), "dropletSurfaceTension": (0.020, 0.070), "dropletViscosityLevel": (1, 3)

database

Latin Hypercube

Sampling DoE

for comparison a Full-Factorial DoE of all parameters

2

3

4

5

8 192

1 594 323

67 108 864

1 220 703 125

Determining the droplet incline

parameters of sigmoid-fit

Analyzing the results

visualization **4 out of 13** parameters (these graphs contains 3 x 5500 x 4 = **66** k CFD-simulations)

stacking angles > 80 deg are possible !

Current Activities: ML analysis and reduction of simulation time

2.00E-07 2.00E-07 4.33E+02 2.00E-01 8.00E-04 2.00E+01 9.85E-06 -4.00E+00 3.23E+02 2.00E-01 4.00E+02 1.00E+00 1.55E+10 00E-07 2.00E-07 4.33E+02 2.00E-01 8.00E-04 2.00E+01 9.85E-06 -4.00E+00 3.23E+02 2.00E-01 4.00E+02 1.00E+00 1.55E+10

<u>Recap</u>

Hehn Tobias +49 8122 9590 3224 TobiasHehn@bundeswehr.org

